

Semester:Semester 2 (Summer 2014-2015)Date/Time:Wednesday 6th May 2015, 9:30 AM - 11:30 AMProgramme:Bachelor of Science (Honours) in Computing (Games Design and Development)
Bachelor of Science (Honours) in Computing (Software Development)
Bachelor of Science in ComputingStage:Year 3Module:ARTIFICIAL INTELLIGENCE
COMP 7003

Time Allowed: 2 hours

Instructions: Attempt any three (3) questions

Additional Attachments: None

External Examiners: Derek O'Reilly Internal Examiners: Janice O'Connell, Eugene Kenny For the 8-puzzle problem, given this initial starting state:

- (a) Using breadth first search, show the search tree that would be built down to *(8 marks)* level 2 (assume level zero is the root of the tree).
- (b) Using depth first search, show the state of the search tree down to level 3 (8 marks) (stop once you have fully expanded one node that goes to level 3)
- (c) What is the worst-case time and space complexity of the above two (6 marks) algorithms.
- (d) Describe the terms complete and optimal with regards to evaluating search (5 marks) strategies?
- (e) Are either depth-first-search or breadth-first-search complete or optimal? (6 marks) Justify your answer.

Question No. 2

Consider the following scenario:

d has been murdered. a, b, and c are suspects (i.e., at most one of a, b, and c are guilty). b claims that he did not know the victim d (i.e., if b did know d, then b is lying). a and c claim that b did know d (i.e., if b did not know d, then a and c are lying). Anyone who lies is guilty.

- (a) Express the key facts and relationships using *first order predicate calculus.* (9 marks)
- (b) Convert the expressions above into clauses in conjunctive normal form (9 marks) (CNF).
- (c) Prove using the resolution refutation process that *b* committed the murder (is *(15 marks)* guilty).

(33 Marks)

Question No. 3		(33 Marks)	
(a)	What are the main problems in reasoning about actions and change?	(6 marks)	
(b)	What is meant by an operator in the context of STRIPS?	(8 marks)	
(c)	What is meant by regression planning?	(8 marks)	
(d)	For the operators and initial state description given below, explain how a regression planner searches for a plan to satisfy a goal, and give an example	(11 marks)	

of a plan that achieves the goal $On(b, a) \land On(c, b) \land OnTable(a)$

- blocks are represented by constants: a, b, c, ... etc.
- states are described using the following predicates:

On(x, y)block x is on block yOnTable(x)block x is on the tableClear(x)there is no block on top of block xHolding(x)the arm is holding block xArmEmptythe arm is not holding any block

- initial state: $On(c, a) \land OnTable(a) \land OnTable(b) \land ArmEmpty$
- goal state: $On(b, a) \land On(c, b) \land OnTable(a)$
- operators:

[Holding(x), Clear(y)] **STACK**(x, y)[On(x, y), ArmEmpty, $\neg Holding(x)$, $\neg Clear(y)$]

[On(x, y), Clear(x), ArmEmpty] UNSTACK(x, y) [Clear(y), Holding(x), $\neg On(x, y)$, $\neg ArmEmpty$]

[OnTable(x), Clear(x), ArmEmpty] **PICKUP**(x) [Holding(x), $\neg OnTable(x)$, $\neg ArmEmpty$,]

[Holding(x)] **PUTDOWN**(x) [OnTable(x), ArmEmpty, $\neg Holding(x)$,]

Question No. 4

(33 Marks)

- (a) A certain disease occurs in 1 percent of the population. A blood test for this (18 marks) disease has a 2 percent false positive rate, and a 5 percent false negative rate (i.e., 2 percent of those not having the disease test positive, and 5 percent of those having the disease test negative). Use two Boolean random variables: D = "has disease" and P = "tests positive."
 - i) What is the **prior** probability of getting a positive test?
 - ii) If you test positive, what is the probability that you actually **have** the disease?
 - iii) If you test negative, what is the probability that you do **not** have the disease?
- (b) Consider the Bayesian network $A \rightarrow B \leftarrow C$ with three Boolean random (15 marks) variables and their conditional probability tables defined by:

P(A) = 0.2 $P(B \mid A, C) = 0.25$ $P(B \mid A, \neg C) = 0.5$ $P(B \mid \neg A, C) = 0.3$ $P(B \mid \neg A, \neg C) = 0.8$ P(C) = 0.55

i) Compute $P(\neg A, B, C)$

- ii) Compute $P(\neg A \mid \neg C)$
- iii) Compute $P(A | B, \neg C)$

Question No. 5		(33 Marks)
	Write an overview of each of the following topics:	
(a)	Local search algorithms	(11 marks)
(b)	Expert systems	(11 marks)
(c)	Neural networks	(11 marks)